Quand le cerveau pondère les informations en se fiant à l’expérience…
Des chercheurs du Massachusetts Institute of Technology (MIT) ont réussi à mieux comprendre comment le cerveau tente de compenser ses limites dans des tâches nécessitant une conversion compliquée de données. Leur étude révèle que le cerveau, comme dans d’autres types de situations où il a peu confiance en ses propres jugements, va surmonter ses difficultés en pondérant les différentes données et en s’appuyant sur de précédentes expériences.
L’exemple donné d’une tâche mentale complexe reposant sur une conversion de données elle-même complexe est l’exercice qui consisterait à écrire son nom de telle manière qu’il puisse être lu dans un miroir. Le cerveau possède toutes les informations visuelles dont il a besoin et chacun sait écrire son nom. Cependant, cette tâche est très difficile pour la plupart d’entre nous car le cerveau doit effectuer une conversion mentale qui ne lui est pas familière : utiliser ce qu’il voit dans le miroir pour guider la main avec suffisamment de précision pour qu’elle écrive à l’envers.
Les chercheurs ont entrepris d’explorer ce type de conversion mentale dans leur étude : les participants ont été invités à effectuer 3 tâches différentes avec des degrés différents de transformation mentale requise. L’expérience montre que dans le cas d’une tâche nécessitant une conversion de données difficile, les participants optimisent leur performance en utilisant les mêmes stratégies que celles utilisées pour vaincre le bruit dans la perception sensorielle.
Par exemple, dans une tâche de traçage de lignes, dans laquelle les participants doivent tracer des lignes de 7,5 à 15 centimètres, en fonction de la longueur de la ligne d’origine, les participants ont tendance à dessiner des lignes de longueur plus proche de la longueur moyenne de toutes les lignes. Cela leur permet d’avoir des traçages plus précis.
De précédentes recherches ont révélé les multiples stratégies qui aident le cerveau à compenser cette incertitude. À l’aide d’un cadre appelé « intégration bayésienne » ou modèle basé sur les probabilités, le cerveau combine plusieurs données pouvant être conflictuelles et les pondère en fonction de leur fiabilité.
Si ces données proviennent de 2 sources différentes, il s’appuiera davantage sur celle qui semble la plus crédible. Mais ce n’est pas tout : dans ce modèle, le cerveau prend également en compte ses expériences passées. L’exemple est donné de la recherche d’un interrupteur la nuit, qui s’appuie sur l’expérience passée de la localisation de l’interrupteur en question.
Une tâche complexe, qui nécessite une transformation mentale plus difficile et crée donc pour le cerveau un surcroît d’incertitude et de variabilité, induit le cerveau à se reposer sur ses expériences passées : « vous faites preuve de partialité envers ce que vous savez bien faire, afin de compenser cette variabilité », commente l’auteur principal, Mehrdad Jazayeri, professeur de sciences de la vie et membre de l’Institut de recherche sur le cerveau McGovern du MIT. Cette stratégie de rappel des expériences passées améliore réellement les performances globales.
Fiabilité de la source et enseignements des expériences passées, ces 2 stratégies semblent fonctionner ensemble pour parfaire l’adaptation du cerveau en faveur d’un résultat particulier. Cette adaptation en forme de régression vers la moyenne contribue à améliorer notre performance globale en réduisant la variabilité et l’incertitude.
Les chercheurs font alors l’hypothèse que, lorsque l’on devient très performant dans une tâche qui nécessite des calculs complexes, le bruit de fond se réduit et devient moins préjudiciable à la performance globale.
yogaesoteric
6 septembre 2019
Also available in: English